Recognizing Opportunities & Successful Implementation

Karen Duhring
Center for Coastal Resources Management
Virginia Institute of Marine Science
College of William & Mary

January 13, 2016
Living Shoreline Professional Workshop
Recognizing Opportunities & Successful Implementation

• Challenges in Developed Urban Estuaries
• Site Suitability Considerations
• Implementation Guidance
• Professional Service Opportunities
Fitting Living Shorelines into a Developed Estuary

It is possible & may require innovative thinking, less than ideal designs
Challenges for Living Shorelines in Developed Estuaries

• Small parcels
• Upland improvements in close proximity to shoreline
• Currently defended
 – Vertical elevation difference
 – Deep nearshore
• Navigation conflicts & boat wakes
 – Dredged channels
 – Sand migration concerns
Recognizing Opportunities & Successful Implementation

• Step 1 – Is shoreline management necessary? Is there a risk problem that needs to be addressed?

Extra scrutiny for all currently undefended shorelines

Especially those with valuable living resources riparian forest, tidal marsh, oysters, SAV
Shoreline Management Need Assessment

• What is the landscape setting?
• How do upland land uses affect shoreline & vice versa?
• Is erosion present & if so can it be tolerated?
 – Is erosion caused by upland runoff &/or wave action?
• Do storm surges impact the property?
• How does sea level rise over time affect the property?
• What risk is associated with navigation interests?
• What level of protection is necessary to reduce risk?

Proceed to Step 2 only when absolutely necessary for risk reduction
Recognizing Opportunities & Successful Implementation

• Step 2 – Alternatives analysis

 Deliberate consideration for non-structural & hybrid living shoreline options
Stabilization Alternatives
Simplistic Order of Preference

- Minor erosion with low risk → Maintain / enhance vegetation
- Minor erosion with some risk → Non-Structural Living Shoreline
- Major erosion with some risk, natural buffers present → Hybrid Living Shoreline
- Major erosion with high risk, natural buffers absent or not feasible → Structural
<table>
<thead>
<tr>
<th>Anthropogenic Factors</th>
<th>More</th>
<th>Less</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property owner</td>
<td>Willing</td>
<td>Not interested</td>
</tr>
<tr>
<td>Parcel size</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Upland improvements</td>
<td>At risk</td>
<td>Not threatened</td>
</tr>
<tr>
<td>Development setback</td>
<td>Wide</td>
<td>Narrow</td>
</tr>
<tr>
<td>Accessory structures</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Adjacent parcels</td>
<td>Same</td>
<td>Different</td>
</tr>
<tr>
<td>Recreation uses</td>
<td>Passive</td>
<td>Active</td>
</tr>
<tr>
<td>Environmental Factors</td>
<td>More</td>
<td>Less</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Riparian buffer</td>
<td>Open</td>
<td>Developed</td>
</tr>
<tr>
<td>Natural marsh</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Amount of sunlight</td>
<td>Full sun</td>
<td>Shaded</td>
</tr>
<tr>
<td>Wind wave action</td>
<td>Minor</td>
<td>Heavy</td>
</tr>
<tr>
<td>Boat wakes</td>
<td>Rare</td>
<td>Frequent</td>
</tr>
<tr>
<td>Nearshore</td>
<td>Shallow</td>
<td>Deep</td>
</tr>
<tr>
<td>Bottom substrate</td>
<td>Hard sand</td>
<td>Soft mud</td>
</tr>
<tr>
<td>SAV</td>
<td>Absent</td>
<td>Present</td>
</tr>
</tbody>
</table>
Eldridge Case Study

Enhance riparian/marsh buffer

Widen existing marsh

Model may not accurately capture all local site-specific conditions, but these practices should at least be considered
VIMS Decision Trees

Decision Tree for Undefended Shorelines and Those with Failed Structures

Decision Trees for Currently Defended Shorelines
NOAA Living Shoreline Guidance & Brochure

- General Guiding Principles
- Conceptual Framework for considering Living Shorelines

- Natural & Structural Measures for Shoreline Stabilization

Extra copies available for distribution to clients & others
Examples of High Suitability

- Failed bulkhead at abandoned boat basin
- Previously cleared rubble shoreline with erosion
Colley Bay - Phase 1

Kevin R. Du Bois, PWS, PWD, CFM
City of Norfolk
Planted Tidal Marshes

- Enhancing or creating suitable conditions for tidal marsh plants
- May require grading the bank and/or filling into the water
- Narrow marsh provides habitat value, wide marsh >15 ft provides wave reduction
Planted Marshes – important considerations

• Good summary of design criteria
 – Walter I. Priest, III 2006 Living Shoreline Summit Proceedings

• Tidal benchmarks are critical, local tide range & extreme tide levels (both low & high)
 – Plant above mid-tide elevation only

• Patience & due diligence required
 – Wave attenuation provided by “well-established” marsh which takes at least 1 growing season (3-4 months)
 – More habitat benefits achieved after 5 years, especially benthic community due to lag time for organic matter accumulation & processing
Biological Benchmarks

- Elevation ranges of natural marshes & riparian buffers in vicinity
How wide should the marsh be?

• The answer depends on the energy regime at project site & the erosion problem—the bigger the waves, the wider the marsh

• Include both low marsh & high marsh zones

• Adjacent development & navigation interests may limit marsh width

• Connect & blend marsh with riparian buffer zone where possible
Planted marsh must be sloped so it is completely exposed at low tide; plant failure may be caused by standing water.

- **Low marsh**
 - *S. alterniflora*

- **High marsh**
 - *S. patens*

- **Salt Bushes**
 - *I. Frutescens & B. halimifolia*

Regular high tide line

Birdsong Wetland Norfolk, VA
Embayed or “Pocket” Marsh
Alternative design to fringe marsh

More complex planting zones

Upland excavation areas

VIMS Teaching Marsh
Gloucester Pt, VA
Tidal wetland plants need to be gradually hardened by nursery for site salinity & temperatures.
Plant Spacing & Growth Pattern

Closer spacing for more rapid cover

Wider spacing to cover large area with limited budget

Marsh grasses will spread underground by rhizomes

Eventually space between plants will fill in naturally

Planted rows not visible over time
If it’s done correctly.....

Planting Day

4 Months Later

Successful establishment indicated by flowering grasses
Grazing Exclusion Devices

Mute Swans & Canada Geese can pull new plants out of the ground, but not established well-rooted plants.

Exclusion devices typically removed after 1st growing season.
Planted Marsh TLC During 1st Growing Season

• Regular inspections
• Monitor ebb & flood tides
• Look for & re-plant washed out plugs
 – Pack in deep
 – Keep grazers out
Main Reasons Planted Marsh Does Not ‘Take’

• Planted too low - below mid-tide elevation
• Washed out plugs
• Incomplete drainage & ponding at low tide
• Rapid sediment accretion

Other Reasons

• Flow stresses – bottlenecks, runoff, waves
• Foot traffic & recreational uses
• Soil contamination
• Undetermined

Need monitoring & analysis of monitoring results
Planted Marsh Maintenance – After Establishment

- Remove excessive tidal debris & trash periodically as needed
- Prune overhanging branches if shading leads to reduced cover
- Remove nuisance, invasive species
- Inspect & document storm effects, storm tide levels
- Do not mow, install landscape design features to control adjacent mowing, e.g. split rail, timbers
- Avoid using lawn chemicals nearby
Fiber Logs & Mats

Provide temporary support for planted tidal marshes and/or riparian buffer restoration

May be effective for trapping sediment

Not usually effective for wave attenuation
Fiber Logs – important considerations

• Easily lifted out of place by the force of water
 – Most suitable sites are low flow velocity
 – Staking & anchoring essential if they are in the water
 – Full contact with ground should be maintained

• Temporary, biodegradable
 – May or may not need to be replaced

• Planting into logs has mixed results
 – Saturation is important for plants
 – Adjacent planted marsh usually grows into them

• Some reported fiber log project ‘failures’ due to unrealistic expectations or incorrect applications
 – Cannot stand alone, usually combined with another element
Monitoring & Maintenance

Fiber Logs

• Inspect frequently

• Pound loose stakes back into ground ASAP

• Add more logs or blankets to repair sand ‘leaks’
Beach Nourishment & Dune Restoration

- Addition of sand to a beach to raise its elevation and increase its width
- Reshaping and stabilizing with dune plants
Beach & Dune Vegetation

American beach grass
Ammophila breviligulata

Bitter panicum
Panicum amarum

Cool-season grass

Winter planting

Saltmeadow hay
Spartina patens

Sea oats
Uniola paniculata

Cold hardy varieties under development
Marsh Sills
VIMS Guidance for Sills in Lynnhaven Estuary

- Low sill with clean sand at 10:1 planted high & low marsh

- Higher sill to replace or protect failing bulkhead

Plus bank grading to a minimum 2:1 slope if appropriate

Available in VA Beach CCRMP
Example of sill & planted marsh next to bulkhead with natural marsh on Eastern Branch Lynnhaven River

Noticeable retreat of marsh edge after adjacent channel dredging & more boat traffic

Bulkhead removal & bank grading preferred but not acceptable to property owner.
Marsh Sill Tidal Openings

• Maintain marsh-shallow water connections & processes
 – Sediment accretion into marsh
 – Organic matter leaving marsh

• Tidal inundation and positive drainage for healthy plant growth

• Marsh access for fish, crabs, terrapins – all sizes

Tightly packed stone in gabions restricts water movement through stones

Algae bloom in warmer, stagnant area
Tidal Openings

Where & when should they be included?

• Site-specific
 – Tidal ponds
 – Natural or created channels
 – Open ends
 – Recreation access

• Sill crest height > MHW

• Sill length > 100 Ft
 – Not a definitive standard
 – May need more or less

Tidal openings are needed but they introduce wave energy into the planted marsh.

Stable embayments eventually form at straight gaps.
Tidal Openings
Other Design Types

Weir Opening or Vented Sill
Gap covered with stone at lower elevation
Sediment deposition still evident

Narrow & curved
Reduces sand deposits
Pinches flow & access

More research needed
Potential Stone Sill Alternatives

• Mid-tide bulkheads
 – Restricted waterways
 – Deep nearshore depths

• Oyster reefs (?)
 – Bagged shell
 – Concrete products

More research needed on performance
Offshore Breakwaters with Beach Nourishment

- Most appropriate for high energy sand beach sites

- Create stable pocket beaches between fixed headlands
 - Requires at least 2 units

- Proper design requires advanced knowledge of coastal processes at site

- Combine with dune planting
Monitoring & Maintenance

Hybrid Structures

• Periodic trapped debris removal
• Add sand & plants
• Modify tidal openings if needed
• Raise sill height if bank erosion continues
• Lower sill height if marsh invaded by *Phragmites*
• Storm damage assessments
• Replace scattered stones
Recognizing Opportunities & Successful Implementation

• Step 3 – Construction Planning

 Part of feasibility determination & design process before permit application

 Don’t wait until after permits issued
Constructability must be determined EARLY in planning process

- Construction access from land or water?
- Any marsh crossings required? May need to use mats
- Machine size?
 - Excavator reach
 - Bobcat
 - Wheelbarrows for hand placement
- Soft substrates – machines can get stuck
Construction equipment operators might need to work together.....

.....to avoid costly errors with liability & environmental harm
Other Considerations

• Erosion & Sediment controls
 – Use silt fences & booms as required

• Stormwater runoff interruptions
 – Know where outfalls are
Other Considerations

• Customer satisfaction & liability
 – Includes post-construction site restoration

• Working with non-traditional clients & volunteers
 – Volunteer coordinators very useful
Bottom line

• Living shoreline projects must be designed for site-specific conditions
 – No ‘cook book’ standards
 – Seek technical advice & support from LS partners & available resources

• Engineering ‘comfort level’
 – Try not to ‘over-design’ just for assurance
 – Try to deal with uncertainty trial & error
 – Need to be flexible, adaptive
Professional Service Opportunities

Design & Construction

- Scouting out suitable sites
- Site evaluations & alternatives analysis
- Concept drawings
- Permit applications & coordination
- Construction management
 - Sub-contractors for heavy lifting
 - Horticulture industry partners (nurseries & installers)
- Post-construction as-built surveys
 - To confirm design standards, permit compliance
Professional Service Opportunities

Long-Term

• Routine inspection & maintenance contracts
 – Provide assurance, document performance

• Debris removal

• Planted area enhancements – gardening, pruning

• Invasive species management

• Storm damage assessment & recovery
Recognizing Opportunities & Successful Implementation

SUMMARY

• It’s possible to have living shorelines in developed estuaries

• Consider all possible alternatives deliberately, don’t automatically rule out living shorelines

• Consult peers & available resources for implementation guidelines, share experiences

• Encourage industry to expand professional service opportunities to meet public demand
Please Share Your Living Shorelines Observations & Experiences!

Contact Information:

Karen Duhring
Virginia Institute of Marine Science
College of William & Mary
PO Box 1346
Gloucester Point, VA 23062
(804) 684-7159

karend@vims.edu
Typical Grass Species Used for Salt Marsh

Low Marsh

- Saltmarsh cord grass
 Spartina alterniflora

- More species possible for low salinity or fresh water, select those that remain above ground during winter e.g. *Spartina cynosuroides, Juncus effusus*

High Marsh

- Saltmeadow hay
 Spartina patens

- Salt grass
 Distichlis spicata

- Switch grass
 Panicum virgatum
Salt Bushes
planted at landward side of high marsh

Groundsel Bush
Baccharis halimifolia

Marsh Elder
Iva frutescens

Wax myrtle / Bayberry
Morella cerifera
M. pennsylvanica

Not as flood tolerant, use at upland edge
1. Dig hole
2. Slow-release fertilizer in hole
3. Insert plant at least 4 inches deep
 Can’t plant too deep!
4. Pack well to remove air pockets

Planting Process

New Gosport Wetland, Portsmouth
Is this a living shoreline?

SAV Habitat

Scott Hardaway & Karen Duhring
2005 Virginia marsh sill survey
Recent “Living Shoreline” JPAs
Planted Marshes Caught in the Middle

Bulkhead
Toe
Revetment
Recent “Living Shoreline” JPAs
Planted Marshes Caught in the Middle